

(Pages: 3)

Reg.	No.	:	***	***	 ***	 	 	•••	
Name	٠.								

Fourth Semester B.Tech. Degree Examination, July 2015 (2008 Scheme)

08.403 : SIGNALS AND SYSTEMS (TA)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions:

- 1. Define even signal and odd signal. Show that any signal x(t) can be expressed as $x(t) = x_e(t) + x_0(t)$ where $x_e(t)$ is an even signal and $x_0(t)$ is an odd signal.
- 2. Sketch the following signals.
 - a) x(t) = u(t + 5) u(t 5)
- b) t.[u(t) u(t-4)]
- 3. Check whether the following system is linear time invariant y(t) = x(2t).
- 4. Show that a discrete system with unit sample response h[n] is stable if $\sum_{n=0}^{\infty} \left|h[n]\right| \leq k_2 < \infty \,.$
- Show that, for a symmetric periodic signal x(t), the exponential Fourier series is real.
- 6. State and prove convolution property of Fourier transform (discrete signal).
- 7. Prove the shifting property of Discrete Time Fourier Transform (DTFT).
- 8. Determine the Laplace transform and region of convergence of the signal $x(t) = te^{-2t}u(t)$.
- 9. Consider a discrete signal x(n) having z transform $x(z) = \frac{z}{z-a}$. Determine all possible choices of x[n]. Which among the possible choices have DTFT?
- 10. Compute the z-transform of x(n) = coswnu(n).

(10×4=40 Marks)

10

4

2

5

PART-B

Answer any two questions from each Module.

Module - I

- 11. Let $x_1(t) = u(t) u(t-5)$ and $x_2(t) \le u(t+5) u(t)$. Compute (a) $x_1(2t)$ (b) $x_2(t/2)$ (c) $X_1(t) * X_2(t)$.
- 12. a) Show that convolution is linear and commutative.
 - b) Unit step response of an LTI system is given by $\frac{1-a^{n+1}}{1-a}u[n]$, |a|<|. Determine the unit sample response of the system.
- 13. a) Determine whether the following discrete signals are periodic or non-periodic. If the signal is periodic, find its fundamental period.
 - a) $\sin\left(\frac{\pi n}{3}\right) \sin\left(\frac{\pi n}{8}\right)$ b) $e^{j\pi n} + e^{j2n}$.

c) Define a) Causal system

b) Static system.

b) $x_1[n] = n$, $0 \le n \le 5$ $x_2[n] = \{-1, 0, 2, 5, -2, 1\}$. = 0 otherwise

Sketch $x_1[n]$, $x_2[n]$ and compute $x_1[n] * x_2[n]$.

5

Module - II

14. a) Fourier series coefficients of a discrete periodic signal is given by

 $C_k = \cos \frac{k\pi}{4} + \sin \frac{3k\pi}{4}$. Period of x[n] is N = 8. Determine the sequence x[n].

b) Determine and sketch the magnitude and phase spectra of the following periodic

signal x[n] = $\cos \frac{2\pi}{3}$ n + $\sin \frac{2\pi}{5}$ n.

5

10

5

Consider the continous time band-limited signal x(t) with a spectrum x(f) as shown in figure above. Sketch the spectrum of the discrete signals x₁[n] and x₂[n] obtained from x(t) by sampling at 5 KHz and 3 KHz respectively.

6

4

- 16. a) A signal x[n] has the following Fourier transform $x(w) = \frac{1}{1 ae^{-jw}}$. Determine the Fourier transform of a) x[2n + 1] b) x[n] * x[-n].
 - b) Consider LTI system with impulse response $h[n] = \left(\frac{1}{3}\right)^n u[n]$. Sketch the magnitude and phase response |H(w)| and |H(w)| and |H(w)| respectively.

Module - III

 Find the inverse Laplace transforms of the following functions and sketch the time functions.

a)
$$F(s) = \frac{e^{-2s}}{s(s+1)}$$
 b) $F(s) = \frac{1 - e^{-5s}}{s(s+5)}$.

a) Determine the inverse z-transform of the following functions.
Assume that the signals are causal.

a)
$$X(z) = \frac{0.5z}{(z-1)(z-0.5)}$$
 b) $X(z) = \frac{z}{z^2 - z + 1}$.

- b) State and prove convolution property of z-transform.
- 19. a) Explain the terms stationary and ergodic random process.
 - b) Obtain relation between DTFT and z transform.